

QUESTION PAPER WITH SOLUTION

CHEMISTRY _ 5 Sep. _ SHIFT - 2

H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |⊠: info@motion.ac.in

Motion[®]

1. The major product formed in the following reaction is :

$$CH_3CH = CHCH(CH_3)_2 \xrightarrow{HBr}$$

$$(1) CH_3CH(Br)CH_2CH(CH_3)_2$$

$$(3) CH_3CH_2CH(Br)CH(CH_3)_2$$

$$(4) Br(CH_2)_3CH(CH_3)_2$$

Sol.

$$CH_{3}-CH=CH-CH \stackrel{CH_{3}}{\stackrel{H^{+}Br^{-}}{\longrightarrow}} CH_{3}-\stackrel{\oplus}{CH}-CH_{2}-CH \stackrel{CH_{3}}{\stackrel{CH_{3}}{\longleftarrow}} CH_{3}$$

$$\downarrow Br$$

$$CH_{3}-CH-CH_{2}-CH \stackrel{CH_{3}}{\stackrel{CH_{3}}{\longleftarrow}} CH_{3}$$

- **2.** Hydrogen peroxide, in the pure state, is :
 - (1) Linear and blue in color
- (2) Linear and almost colorless
- (3) Non-planar and almost colorless
- (4) Planar and bluein color
- **Sol. 3** H₂O₂ has openbook structure it is non planar

2 2 '

- **3.** Boron and silicon of very high purity can be obtained through:
 - (1) Liquation

(2) Electrolytic refining

(3) Zone refining

(4) Vapour phase refining

- Sol. 3 Fact
- **4.** The following molecule acts as an:

- (1) Anti-histamine
- (2) Antiseptic
- (3) Anti-depressant (4) Anti-bacterial

Sol. 1

Anti-histamine

5. Among the following compounds, geometrical isomerism is exhibited by :

$$(1) \begin{array}{c} CHCI \\ CHCI \\ CH_3 \end{array} \qquad (2) \begin{array}{c} CHCI \\ CHCI \\ CH_3 \end{array} \qquad (3) \begin{array}{c} CHCI \\ CHCI \\ CH_3 \end{array} \qquad (4) \begin{array}{c} CH_2 \\ CI \\ CI \end{array}$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

Sol. 1 & 2

$$H$$
 CI CI H CH_3 are geometrical isomer CH_3 C

6. Adsorption of a gas follows Freundlich adsorption isotherm. If x is the mass of the gas adsorbed on mass m of the adsorbent, the correct plot of $\frac{x}{m}\,$ versus p is :

Sol. 2

As temp. increases extent of Adsorption decreases Therefore correct option (2)

$$\frac{x}{m} = KP^{1/n}$$

$$\frac{x}{m}$$
 v/s P \rightarrow non linear curve

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

MOTION[®]

- The compound that has the largest H-M-H bond angle (M=N, O, S, C) is : 7.
 - (1) CH₄

Sol. 1

$$NH_3$$

$$H_2O$$

$$Sp^3(\ell p = 2)$$

$$\Pi_2 S$$

Sn³ (ℓ n =

$$Sp^{3}(\ell p = 0)$$

BA 107°28¹

$$Sp^{3}(\ell p = 1 BA = 107^{0}$$

$$Sp^{3}(\ell p = 2)$$

 $BA = 104^{\circ}5^{\circ}$

$$Sp^{3} (\ell p = 2)$$

BA = 92°

- 8. The correct statement about probability density (except at infinite distance from nucleus) is :
 - (1) It can be zero for 3p orbital
- (2) It can be zero for 1s orbital
- (3) It can never be zero for 2s orbital
- (4) It can negative for 2p orbital

Sol.

$$\psi^2$$
 > 0 always

$$\psi^2_{R/S}$$
 can be = 0; As '2s' has 1 Radial Node

$$\psi^2$$
 can never be negative

$$\Psi_p^2$$
 (3P) can be = 0 as 3P has Radial Nodes

9. The rate constant (k) of a reaction is measured at differenct temperatures (T), and the data are plotted in the given figure. The activation energy of the reaction in kJ mol⁻¹ is: (R is gas constant)

- (1)R
- Sol.

$$ln(k) = ln(A) - \frac{Ea}{R} \left(\frac{1}{T}\right)$$

$$ln(A) = 10$$

Slope =
$$\frac{-Ea}{R} \times 10^{-3} = -10/5$$

$$E_a = 2000R \text{ J/mol}$$

 $E_a = 2R \text{ KJ/mol}$

$$E_a = 2000R J/III$$

 $E_c = 2R KJ/mol$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Motion

10. The variation of molar conductivity with concentration of an electrolyte (X) in aqueous solution is shown in the given figure.

The electrolyte X is :

(1) HCl

(2) CH₃COOH

(3) NaCl

(4) KNO₃

Sol. 2

Such type of variation is always for weak electrolyte Hence Ans (2) CH₃COOH

11. The final major product of the following reaction is :

Me (i)
$$Ac_2O/Pyridine$$
 (ii) $Br_2/FeCl_3$ (iii) OH^-/Δ

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

Sol. 3

The major product of the following reaction is : **12.**

$$(1) \bigcirc_{0}^{CH=CH_{2}}$$

3 Sol.

- 13. Lattice enthalpy and enthalpy of solution of NaCl are 788 kJ mol⁻¹, and 4 kJ mol⁻¹, respectively. The hydration enthalpy of NaCl is:
 - (1) –780 kJ mol⁻¹ (3) –784 kJ mol⁻¹

(2) 784 kJ mol⁻¹

(4) 780 kJ mol⁻¹

Sol.

$$\begin{array}{l} \Delta H_{sol} = L.E. + \Delta H_{hyd} \\ 4 = 788 + \Delta H_{Hyd} \\ \Delta H_{Hyd} = -784 \text{ KJ/mol Ans} \end{array}$$

14. Reaction of ammonia with excess Cl₂ gives:

(1) NH₄Cl and N₂

(2) NH₄Cl and HCl

(3) NCl₃ and HCl

(4) NCl₃ and NH₄Cl

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

Sol. 3

(1)
$$NH_3 + 3Cl_2 \longrightarrow NCl_3 + 3HCl$$

(excess)

(2)
$$8NH_3 + 3Cl_2 \longrightarrow 6NH_4Cl + N_2$$

(excess)

- 15. Which one of the following polymers is not obtained by condensation polymerisation?
 - (1) Bakelite
 - (3) Buna-N

- (2) Nylon 6
- (4) Nylon 6, 6

Sol.

n
$$CH_2=CH-CH=CH_2+$$
 n $CH_2=CH\longrightarrow$

$$CH_2=CH-CH=CH_2+$$
 n $CH_2=CH-CH_2-CH_2-$
1,3-Butadiene Acrylo nitrile Buna - n

16. Consider the comples ions,

trans-[Co(en),Cl,]+(A) and

cis-[Co(en),Cl,]+ (B)

The correct statement regarding them is:

- (1) Both (A) and (B) can be optically active.
- (2) (A) can be optically active, but (B) cannot be optically active.
- (3) Both (A) and (B) cannot be optically active.
- (4) (A) cannot be optically active, but (B) can be optically active.

Sol.

Due to presence of Pos (A) cannot be optically active, but (B) can be optically active

- An element crystallises in a face-centred cubic (fcc) unit cell with cell edge a. The distance **17.** between the centres of two nearest octahedral voids in the crystal lattice is :
 - (1)a
- (2) $\frac{a}{2}$
- (3) $\sqrt{2}a$

(4) $\frac{a}{\sqrt{2}}$

Sol.

Nearest octahedral voids

One along edge center & other at Body centre

Distance =
$$\sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2} = \sqrt{2} \frac{a}{2}$$

= $\frac{a}{\sqrt{2}}$ Ans.

- 18. The correct order of the ionic radii of O²⁻, N³⁻, F⁻, Mg²⁺, Na⁺ and Al³⁺ is:
 - $\begin{array}{lll} \text{(1) } N^{3-} < O^{2-} < F^{-} < Na^{+} < Mg^{2+} < Al^{3+} \\ \text{(3) } Al^{3+} < Na^{+} < Mg^{2+} < O^{2-} < F^{-} < N^{3-} \\ \end{array} \\ \begin{array}{lll} \text{(2) } N^{3-} < F^{-} < O^{2-} < Mg^{2+} < Na^{+} < Al^{3+} \\ \text{(4) } Al^{3+} < Mg^{2+} < Na^{+} < F^{-} < O^{2-} < N^{3-} \\ \end{array}$

Sol.

all are Isoelectronic

$$(1) \,\, \frac{N^{3\text{-}}O^{2\text{-}}F\text{-}Na\text{+}Mg^{2\text{+}}AI^{3\text{+}}}{Z\uparrow,Zeff\uparrow,IonicRadii} \downarrow$$

(2)
$$AI^{3+} < Mg^{2+} < Na^+ < F^- < O^{2-} < N^{3-}$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Motion[®]

19. The increasing order of boiling points of the following compounds is :

Sol.

$$\begin{array}{c|c}
OH & OH & OH & OH \\
\hline
NO_2 & NH_2 & OCH_3 & CH_3 \\
\hline
(II) & (III) & (IV) & (I)
\end{array}$$

20. The one that is NOT suitable for the removal of permanent hardness of water is :

(1) Ion-exchange method

(2) Calgon's method

(3) Treatment with sodium carbonate

(4) Clark's method

Sol. 4

Clark's method is used for Removal of Temporary hardness $Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 \downarrow + 2H_2O$ $Mg(HCO_3)_2 + 2Ca(OH)_2 \rightarrow 2CaCP_3 + Mg(OH)_2 \downarrow + 2H_2O$

21. For a reaction $X + Y \rightleftharpoons 2Z$, 1.0 mol of X, 1.5 mol of Y and 0.5 mol of Z were taken in a 1 L vessel and allowed to react. At equilibrium, the concentration of Z was 1.0 mol L^{-1} . The equilibrium

rium constant of reaction is _____ $\frac{x}{15}$. The value of x is _____.

Sol. 16

$$\begin{array}{ccc} x+ & y \rightleftharpoons & 2Z \\ t=0 & 1 mol & \frac{3}{2} mol & \frac{1}{2} mol \end{array}$$

$$t_{eq}$$
 - - 1 mol $2x = \frac{1}{2}$

$$t_{eq}$$
 $1-x$ $\frac{3}{2}-x$ $\frac{1}{2}+2x$ $x = \frac{1}{2}$

$$t_{eq}$$
 $\frac{3}{4}$ mol $\frac{5}{4}$ mol 1 mol

$$K_{eq} = \frac{(1)^2}{\frac{5}{4} \times \frac{3}{4}} = \frac{16}{15}$$
 $x = 16 \text{ Ans.}$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

Motion[®]

- **22.** The volume, in mL, of 0.02 M K₂Cr₂O₇ solution required to react with 0.288 g of ferrous oxalate in acidic medium is _____. (Molar mass of Fe= 56 g mol⁻¹)
- Sol. 50 ml

$$K_2Cr_2O_7 + FeC_2O_4 \rightarrow Cr^{3+} + Fe^{3+} + CO_2$$

$$\frac{0.02 \times \text{vol} \times 6}{1000} = 3 \times \frac{0.288}{144} \times 100$$

Vol. =
$$\frac{200}{4}$$
 = 50 ml Ans.

- **23.** Considering that $\Delta_0 > P$, the magnetic moment (in BM) of $[Ru(H_2O)_6]^{2+}$ would be _____.
- Sol. 0

$$[Ru(H_2O)_6)^{2+}$$

$$Ru^{2+} = 3d^6 (\Delta_0 > P)$$

$$= t_2 g^6 eg^0$$

$$n = 0, u = 0$$

- **24.** For a dimerization reaction, $2A(g) \rightarrow A_2(g)$ at 298 K, $\Delta U^{\odot} = -20$ kJ mol⁻¹, $\Delta S^{\odot} = -30$ kJ mol⁻¹, then the ΔG^{\odot} will be ______ J.
- Sol. -13538 J

$$2A \longrightarrow A_2$$

$$\Delta H^{\oplus} = -20000 + (-1) R \times 298$$

$$\Delta G^{\odot} = -20000 - 298R + 30 \times 298$$

$$\Delta G^{\odot} = -20,000 + 298 \left(\frac{90 - 25}{3} \right)$$

$$\Delta G^{\oplus} = 20,000 + \frac{298 \times 65}{3}$$

- **25.** The number of chiral carbons present in sucrose is _____.
- Sol. 9

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

Admission **OPEN**

जब इन्होंने पूरा किया अपना सपना तो आप भी पा सकते है लक्ष्य अपना

JEE MAIN RESULT 2019

KOTA'S PIONEER IN DIGITAL EDUCATION 1,95,00,000+ viewers | 72,67,900+ viewing hours | 2,11,000+ Subscribers

SERVICES	SILVER	GOLD	PLATINUM
Classroom Lectures (VOD)			
Live interaction	NA		
Doubt Support	NA		
Academic & Technical Support	NA		
Complete access to all content	NA		
Classroom Study Material	NA		
Exercise Sheets	NA		
Recorded Video Solutions	NA		
Online Test Series	NA		
Revision Material	NA		
Upgrade to Regular Classroom program	Chargeable	Chargeable	Free
Physical Classroom	NA	NA	
Computer Based Test	NA	NA	
Student Performance Report	NA	NA	
Workshop & Camp	NA	NA	
Motion Solution Lab- Supervised learning and instant doubt clearance	NA	NA	
Personalised guidance and mentoring	NA	NA	

FEE STRUCTURE					
CLASS	SILVER	GOLD	PLATINUM		
7th/8th	FREE	₹ 12,000	₹ 35,000		
9th/10th	FREE	₹ 15,000	₹ 40,000		
11th	FREE	₹ 29,999	₹ 49,999		
12th	FREE	₹ 39,999	₹ 54,999		
12th Pass	FREE	₹ 39,999	₹ 59,999		
+ Student Kit will be provided at extra cost to Platinum Student.					

- SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures.
- GOLD (Online) can be converted to regular classroom (Any $MOTION \ Center) \ by paying \ difference \ amount \ after \ lockdown.$
- *** PLATINUM (Online + Regular) can be converted to regular classroom (Any MOTION Center) without any cost after

New Batch Starting from:

16 & 23 September 2020

Zero Cost EMI Available

